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Problem 1. (a) Let p be the Minkowski functional for a convex set U ⊂ X. Show
that for x ̸= 0, p(x) = 0 if and only if x ∈ tU for every t > 0.

(a) Show that p(x) ≤ 1 if x ∈ U , and p(x) ≥ 1 if x /∈ U .

Proof. (a) If 0 ̸= x ∈ tU for every t > 0, by the de�nition of p(x), for all t > 0 such
that x ∈ tU and

t > p(x),

which implies p(x) = 0. If x ̸= 0 and p(x) = 0, then for arbitrary �xed ε > 0, there
exists t′ > p(x) = 0 such that x ∈ t′U and

t′ < p(x) + ε = ε.

Therefore for arbitrary �xed t > 0, choosing ε ≤ t, by convexity, we have x ∈ t′U ⊂
tU .

(b) If x ∈ U , then p(x) ≤ 1 by the de�nition. If x /∈ U , suppose p(x) < 1, then
for arbitrary ε > 0, there exists t > p(x) such that x ∈ tU and

t < p(x) + ε,

therefore by choosing ε = 1− p(x), we have p(x) < t < 1, then x ∈ tU ⊂ U which
is a contradiction. Therefore p(x) ≥ 1 for x /∈ U . □

Problem 2. Let M be the set of sequences in the real space c00 for which the
leading nonzero term is positive. Show that the sets M and −M are convex and
disjoint, but they cannot be separated by a hyperplane.

Proof. Recall that c00 is the set of sequences x such that x(n) = 0 for all but �nitely
many n ∈ N. We show that M and −M are convex and disjoint. It is clear that M
and −M are disjoint. For x1, x2 ∈ M , and 0 ≤ λ ≤ 1, we assume that there exists
N ∈ N such that for all n > N ,

x1(n) = x2(n) = 0,

therefore

λx1(n) + (1− λ)x2(n) = 0,

which implies λx1 + (1− λ)x2 ∈ c00. Moreover, suppose the leading nonzero terms
in x1 and x2 are x1(n1) > 0 and x2(n2) > 0 respectively, with out loss of generality,
we assume n1 ≤ n2, therefore

λx1(n1) + (1− λ)x2(n1) ≥ λx1(n1) > 0,

which implies λx1 + (1 − λ)x2 ∈ M , therefore M is a convex set. In the similar
way, we can prove that −M is also a convex set.

Then suppose to the contrary, that there exist f ∈ (c00)
∗ and constant c ∈ R

such that

f(x) ≥ c > f(y), ∀x ∈ M,y ∈ −M.
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For i ∈ N, let ei be de�ned as

ei(j) =

{
1, j = i,

0, j ̸= i.

Then since ei ∈ M and −ei ∈ −M , therefore

f(ei) ≥ c, f(ei) > −c.

If c = 0, then for all i ∈ N,
f(ei) > 0.

Taking

x0(k) =


1, k = 1,

−2 f(e1)
f(e2)

, k = 2,

0, k ≥ 3,

then
f(x0) = −f(e1) < 0,

which is a contradiction since x0 ∈ M . For c ̸= 0, without loss of generality, we
assume c > 0, since (c00)

∗ = ℓ1, there exists f ′ ∈ ℓ1 such that for all x ∈ c00,

f(x) =

∞∑
i=1

f ′(i)x(i),

then for each i ∈ N, by taking x = ei,

f ′(ei) ≥ c > 0,

therefore f ′ /∈ ℓ1 which is a contradiction. □

Problem 3. Let C([0, 1]) be the vector space of continuous functions on [0, 1].
De�ne δ(x) = x(0) for x ∈ C([0, 1]).

(a) Show that δ is a bounded linear functional if C([0, 1]) is endowed with the
sup-norm. Find the norm of δ.

(b) Show that δ is an unbounded linear functional if C([0, 1]) is endowed with
the norm

∥x∥ =

∫ 1

0

|x(t)|dt.

Proof. (a) It is clear that δ is a linear functional. Moreover, for all x ∈ C([0, 1]),

|δ(x)| = |x(0)| ≤ ∥x∥∞,

which implies δ is bounded and ∥δ∥(C([0,1]))∗ ≤ 1. Choosing x ≡ 1[0,1], then
∥1[0,1]∥∞ = 1, and

δ(1[0,1]) = 1,

which implies ∥δ∥(C([0,1]))∗ = 1.
(b) Consider for n ∈ N,

xn(t) =

{
−2n2t+ 2n, t ∈ [0, 1

n ],

0, t ∈ ( 1n , 1].

Then ∥xn∥1 = 1 and δ(xn) = 2n, therefore δ is unbounded since we can take n
arbitrarily large. □
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